2022长沙选调生行测题库:行测数学运算模拟题(九)
行测题库:行测数学运算模拟题 1、100人参加七项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么参加第四多的活动最多有几人参加?
A.22 B.21 C.24 D.23
2、某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门。假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少是多少人?
A.10 B.11 C.12 D.13
行测题库:行测数学运算模拟题答案1、【答案】A。中公解析:题干描述中“100人参加7项活动”明显是7个量的和一定,最后所求也是问的最大值,所以很显然就是和定最值问题。求第四多的活动最多有多少人,只要使其他量尽可能少即可,此时可以确定第五、六、七项活动的人数,分别是1,2,3人。其余项没法直接确定,但我们可以确定要使第三项也尽可能小,再小也不能少于第四项的人数,再结合题干人数不一样,故第三项最小也得比第四项多1人,第二项比第三项多一人,第一项比第二项多1人。故可设第四项位x,可得以下方程: (x+3)+ (x+2)+ (x+1)+x+3+2+1=100,解得x=22,选择A项。
2、【答案】B。中公解析:题干描述中“65名毕业生,拟分配到该单位的7个不同部门”,且求最小值,故是和定最值问题。问题所求为最大量的最小值,只要使其他部门分得的人数尽可能的多即可。分得第二多部门的人数再多也不能多于行政部门,最多只能少1,其余的部门和第二多部门的人数相等即可达到最大值。故可得方程:x+6(x-1)=65,解得x约等于10点几,因为问题所求是最小值,故x取不到10,只能取11,B项当选。